Stabilization of the VPI-5 Structure Through the Pyrolysis of a Carbon Precursor
Michael Tsapatsis (PI) and Jared Stoeger
Chemical Engineering and Materials Science, University of Minnesota
NNIN Facility utilized: Characterization Facility

- Thermal instability of VPI-5
 - Pores of uniform cross section (12.7 Å) extended to long (c) axis of crystal
 - At temperatures as low as 70°C, the framework begins to collapse to the smaller aluminophosphate AlPO-8 (8.4 Å pores)
 - Strategy: Prevent the framework collapse through carbonization in the channels

- Structure retention
 - Pore filling using a carbon precursor blocks the channels
 - XRD patterns indicate complete structure retention following carbonization at 800°C
 - Future work will include XRD and TEM investigations on the occluded carbon species after framework removal

SEM image of elongated VPI-5 crystals

XRD pattern for a) as-synthesized VPI-5 and b) VPI-5 following carbonization at 800°C in its channels