Residual Stress Induced Toughening in SiC Nanocomposite Coatings

W.W. Gerberich¹(PI), S.L. Girshick²(PI), A.R. Beaber¹
Chemical Engineering & Materials Science¹, Mechanical Engineering², University of Minnesota

NNIN Facilities utilized: Characterization Facility & Nanofabrication Center

○ DESCRIPTION OF WORK
 ◆ Multilayered nanocomposite coatings were deposited using a hybrid process of nanoparticle impaction and chemical vapor deposition.
 ◆ Consecutive deposition of SiC and TiX layers creates a film with layers of crystalline SiC nanoparticles embedded in a crystalline SiC matrix followed by Ti/TiO₂/TiC/TiO composite layers.
 ◆ Nanoindentation was used to understand the elastic-plastic performance of the films.
 ◆ Interlayer adhesion was studied with focus ion beam milled cross sections.

○ MAJOR OBSERVATIONS
 ◆ Both layers show an increased hardness without a change in the modulus compared to coarse-grained samples.
 ■ SiC: 37.4 ± 3.0 GPa and 380.3 ± 17.2 GPa
 ■ TiX: 19.4 ± 1.5 GPa and 283.6 ± 10.0 GPa
 ◆ Interlayer delamination at TiX-SiC interface due to tensile residual stress

◆ Publications

◆ Funding
 ◆ NSF CTS-0506748